
ARTANDCODE
programming environments for artists,
young people & the rest of us

7-9 march, 2009

carnegie mellon
pittsburgh, pa

Saturday, March 7

9-10am

10am-1pm

1-2pm

2-5pm

5:30-7:30pm

8-9:10pm

LOUNGE REGISTRATION & BREAKFAST
 Coffee and tea will be available in the lounge all day.

BAKER-140F Patient Intro to Processing, Part 1(Reas)
CFA-318 Intro to Flash Programming with Actionscript (Greenberg)
WEAN-5201 Brisk Intro to Processing (Shiffman)
WEAN-5202 Information Visualization with Processing (Fry)
CFA-323 Audio & MIDI with Max/MSP (DuBois)
CFA-303 openFrameworks (Lieberman, Watson & Castro)
CFA-310 Hijacking Photoshop & Illustrator with Extendscript (Woohoo)
BAKER-140E Teaching with Scratch (Eastmond)
BAKER-140C Drawing Cats with Hackety Hack (Why)

LOUNGE LUNCH & BOOK SALE
 Authors will sign books at 1:30

BAKER-140F Patient Intro to Processing, Part 2 (Reas)
CFA-318 Teaching with Processing (Greenberg)
WEAN-5201 Processing: Advanced Applications (Shiffman)
WEAN-5202 Information Visualization with Processing (Fry)
CFA-323 Video & Graphics with Max/MSP/Jitter (DuBois)
CFA-303 openFrameworks (Lieberman, Watson & Castro)
CFA-317 Intro to VVVV (Oschatz)
CFA-310 Intro to Silverlight (Brown)
BAKER-140C Scratch for Young People (Maloney & Eastmond)
BAKER-140E Play Games with Hackety Hack (_Why)

LOUNGE OPENING RECEPTION
 Shuttle buses will depart Frew St at 7:10 and 7:35 to take you to
 the Oskar Fischinger film festival.

Pittsburgh OSKAR FISCHINGER FILM FESTIVAL
Filmmakers Free admission with your conference badge. Shuttle buses will be
 available at 9:15 and 9:50 to return you to campus and hotels.

DAYLIGHT SAVINGS REMINDER:

Daylight Savings Time starts tomorrow (Sunday, March 8.)
Set your clocks ahead 1 hour before you go to bed tonight.

The main meeting place for ART AND CODE is the Lounge outside the Giant Eagle Auditorium,
located on the first floor of Baker Hall (Baker-GE). Directional signs will be posted at the building’s
main entrance.

CODE and FORM EXHIBIT
Free admission with your conference badge
Pittsburgh Center for the Arts, Saturday,10am-5pm

Half-Day Workshops

Sunday, March 8
LOUNGE REGISTRATION & BREAKFAST
 Coffee and tea will be available in the lounge all day.

BAKER-GE Opening Remarks (Levin)

BAKER-GE Alice (Slater)

BAKER-GE Silverlight (Brown)

BAKER-GE Scratch (Maloney & Eastmond)

BAKER-GE Hackety Hack (_Why)

LOUNGE LUNCH & BOOK SALE

BAKER-GE Processing (Fry & Reas)

BAKER-GE Max/MSP/Jitter (DuBois)

BAKER-GE VVVV (Oschatz)

LOUNGE COOKIE BREAK

BAKER-GE AIR & Extendscript (Woohoo)

BAKER-GE openFrameworks (Lieberman, Watson & Castro)

BAKER-GE Keynote Lecture (McMail)

FREW ST Shuttle buses will depart Frew St at 7:10 and 7:35 to take you to
 brillobox and the Oskar Fischinger film festival

brillobox Open-mic Dorkbot
 Shuttle buses will be available at 10, 11, 12 and 1 to return you to
 campus and hotels

Pittsburgh OSKAR FISCHINGER FILM FESTIVAL
Filmmakers Free admission with your conference badge. Shuttle buses will be
 available at 9:15 and 9:50 to take you to brillobox, campus and
 hotels.

8-8:45am

8:45-9am

9-9:45am

9:45-10:30am

10:30-11:15am

11:15-12:00pm

noon-1pm

1-1:45pm

1:45-2:30pm

2:30-3:15pm

3:15-3:30pm

3:30-4:15pm

4:15-5pm

5-5:45pm

7:10pm

7:30pm-1am

8-9:10pm

CODE and FORM EXHIBIT
Free admission with your conference badge
Pittsburgh Center for the Arts, Sunday, noon-5pm

Presentations

LOUNGE BREAKFAST
 Coffee and tea will be available in the lounge all day.

BAKER-140C/E Alice: Intro to Programming (Dann & Slater)
CFA-318 Getting Started with VVVV (Oschatz)
CFA-317 Getting Started with Processing (Greenberg)
CFA-303 Pure Data Demo (Steiner)

CFA-303 Getting Started with openFrameworks (Lieberman, Watson & Castro)
BAKER-140F Getting Started with Scratch (Maloney & Eastmond)
CFA-318 Getting Started with Processing (Shiffman)
CFA-310 Getting Started with Extendscript (Woohoo)

LOUNGE LUNCH

BAKER-GE Developing New Tools (panel)

BAKER-GE Educating in New Ways (panel)

8-9am

9-10:20am

10:30-noon

noon-1pm

1-1:30pm

1:30-2pm

Monday, March 9
Short Workshops & Panels

Campus Map

Walking time from the garage to Baker Hall is 5-10 minutes.

(A) Giant Eagle Auditorium & Main Lounge Area (in Baker Hall)
(B) Baker Hall workshop rooms (140C, 140E and 140F)
(C) CFA workshop rooms (303, 310, 317, 318, 323)
(D) Wean Hall workshop rooms (5201, 5202)
(E) Shuttle pickup area (outside main entrance of Baker Hall, along Frew Street)
(F) East Campus Garage
(G) University Center:
 ATMs
 Skibo Cafe (Coffeehouse): Sat 10am-6pm, Sun 10am-6pm, Mon 9am-3pm.
 Entropy+ (Convenience Store): Sat 12-6pm; Sun 12-6pm; Mon 7:30am-6pm.
 Si Senor (Tex/Mex Fast Food): Sat 10am-6pm, Sun 10am-6pm, Mon 11am-2pm.

Please note, Carnegie Mellon is on Spring break this weekend, so many campus facilities are closed. A wide
variety of restaurants, cafes and bars are located on S. Craig Street, just two blocks from campus.

For an interactive Google map with walking and driving directions to hotels, restaurants,
bars, galleries and other attractions, please see the conference website:

ARTANDCODE.NING.COM

Pittsburgh Map

"ART AND CODE is the software wing of the DIY movement."
-- Tom McMail, Microsoft Research

Just as true literacy in English means being able to write as well as read,
true literacy in software demands not only knowing how to use commer-
cial software tools, but how to create new software for oneself and for
others. Today, everyday people are still woefully limited in their ability to create
their own software. Many would like to create their own programs and interactive
artworks, but fear that programming is “too hard.” The problem, it turns out, may not
be programming itself so much as the ways in which it is conventionally taught.

Recently, a number of projects dedicated to democratizing the education of computa-
tional thinking have coalesced. Emerging primarily from the arts sector, a set of new
programming tools (and accompanying pedagogic techniques) have been developed
by artists, and for artists, to help regular folks and other non-computer-scientists
learn to make software. Using visual and musical expression as the "hook", thou-
sands of people have not only learned to code using these new environments, but
found new reasons to code in the first place. These toolkits – many of which are free,
open-source initiatives – have made enormous inroads towards expanding the com-
putational skills and interests of hundreds of thousands of creative people worldwide.
You too can join this movement!

This conference is for:
• Artists, designers and musicians who want to create interactive art, information

visualization, or personal software tools;
• Teens, undergraduates, and graduate students who wish to combine art, design,

interaction, and computer science;
• Middle-school and high-school teachers who want a more expressive way of

teaching programming and computer arts;
• College educators and professional artists who want to learn the most cutting-

edge tools for interaction design;
• Computer-science education researchers interested in visually-oriented learning

tools;
• Anyone who has been wanting to learn how to program their own software, but

hasn't known where to start!

-- Golan Levin, ART AND CODE Conference Organizer
<golan@andrew.cmu.edu>

Motivation

Tools & Workshops
ActionScript
www.adobe.com/devnet/actionscript
Presented by Ira Greenberg (Author, Processing for Flash Developers)

Actionscript is the programming language used in Adobe’s popular Flash authoring
tool. Originally created as a way for developers to program interactivity in the Flash
Player, ActionScript enables efficient programming of Adobe Flash applications for
everything from simple animations to complex, data-rich, interactive application
interfaces.

Alice
www.alice.org
Presented by Don Slater and Wanda Dann

Alice is an innovative 3D programming environment that makes it easy to create an
animation for telling a story, playing an interactive game, or a video to share on the
web. Alice is a freely available teaching tool designed to be a student’s first exposure
to object-oriented programming. It allows students to learn fundamental program-
ming concepts in the context of creating animated movies and simple video games.
In Alice, 3-D objects (e.g., people, animals, and vehicles) populate a virtual world and
students create a program to animate the objects.

In Alice’s interactive interface, students drag and drop graphic tiles to create a pro-
gram, where the instructions correspond to standard statements in a production
oriented programming language, such as Java, C++, and C#. Alice allows students to
immediately see how their animation programs run, enabling them to easily under-
stand the relationship between the programming statements and the behavior of ob-
jects in their animation. By manipulating the objects in their virtual world, students
gain experience with all the programming constructs typically taught in an introduc-
tory programming course.

ExtendScript
seminars.adobe.acrobat.com/p51382259/
Presented by Dr. Woohoo

Did you know that you can write scripts to control Photoshop? To automate Il-
lustrator? to abuse AfterEffects? You can with ExtendScript, Adobe’s implementa-
tion of JavaScript. It is used by all Adobe Creative Suite applications that support a
JavaScript interface.

Hackety Hack
hacketyhack.net
Presented by why the lucky stiff

Hackety Hack is a free Ruby-based environment which aims to make programming
easily available to beginners, especially teenagers. Its motivation was an essay en-
titled The Little Coder’s Predicament, written in 2003 by a fellow called (Mr.) why
the lucky stiff, which argued that programming isn’t as readily available as it was in
the days of the Commodore 64, and that something should be done about it to help
beginners tinker with their computers.

One of Hackety Hack’s sincere pledges is to make the most common code very easy
and short. Downloading an MP3 can be done in one line of code. Making a blog takes
about 6 lines. Constructing your own Instant Messaging system takes about twice
that. Presently, Ruby is the only language taught by Hackety Hack. And it’s a great
one to start with.

All of this, the whole of it, is totally free to you. My wish is to spread infectious hack-
ing smarts all over the world. And so Hackety Hack is yours forever at no cost: give it
away, take it apart, learn-learn-learn without a second thought.

Max/MSP/Jitter
www.cycling74.com/downloads/max5
Presented by Luke DuBois

Max/MSP/Jitter is an interactive graphical programming environment for music,
audio, and media. For over two decades, people have been using Max/MSP/Jitter
to make their computers do things that reflect their individual ideas and dreams.
Compatible with Mac and Windows, Max/MSP/Jitter provides true cross-platform
authoring and a free runtime version.

Max/MSP/Jitter is three things:
 1. Max, a graphical programming environment that provides user interface, timing,
communications, and MIDI support;
 2. MSP, for real-time audio synthesis and digital signal processing;
 3. Jitter, for video and matrix data processing.

Max/MSP/Jitter is a common framework in which artists and researchers from
varied disciplines can collaborate and cross-pollinate, building upon their respec-
tive specialties, all within the same flexible architecture. Recent artistic and research
projects that have used Max/MSP/Jitter range from evolutionary systems for gener-
ating video filters to a computer controlled paint gun printer, and from music driven
by the movement of ballet dancers to a robotic labyrinth that changes form as the
participant walks through it.

openFrameworks
www.openframeworks.cc
Presented by Zachary Lieberman, Theodore Watson, and Arturo Castro

Especially created for artists and designers, openFrameworks is the ideal starting
point for those who want to take their first steps in C++ programming. At the same
time, it is an immensely powerful tool for developing more advanced projects, pro-
viding a simple and intuitive structure for experimentation with many other open-
source libraries.

The openFrameworks library is open-source, designed to work as a general purpose
glue in order to wrap together several commonly-used open source libraries within a
tidy interface: openGL for graphics, openCV for computer vision, rtAudio for audio
analysis and synthesis, freeType for fonts, freeImage for image input and output,
Quicktime for video playing and sequence grabbing, and many other free libaries for
networking, serial communications, vector graphics output, etcetera.

The code is written to be both cross platform and cross compiler. It works in Mac,
Windows and Linux operating systems -- and it compiles in readily-downloadable
template projects for the free XCode, CodeBlocks, VisualStudio, and gcc compilers.
The API is designed to be minimal and easy to grasp. There are very few classes, and
inside of those classes, there are very few functions. The code has been implemented
so that within the classes there is minimal cross-referening, making it quite easy to
rip out and reuse, if you need, or to extend.

Processing
processing.org
Presented by Casey Reas, Ben Fry, Ira Greenberg, and Daniel Shiffman

Processing is an open-source programming language, development environment, and
online community that since 2001 has promoted software literacy within the visual
arts. Initially created to serve as a software sketchbook and to teach fundamentals of
computer programming within a visual context, Processing quickly developed into
a tool for creating finished professional work as well. It is used by students, artists,
designers, researchers, and hobbyists for learning, prototyping, and production. It is
created to teach fundamentals of computer programming within a visual context and
to serve as a software sketchbook and professional production tool for programming
images, animation, and interactions.

Processing is a free alternative to proprietary software tools with expensive licenses,
making it accessible to schools and individual students. Its open-source status en-
courages the community participation and collaboration that is vital to its growth.
Contributors share programs, contribute code, answer questions in the discussion
forum, and build libraries to extend the possibilities of the software. The Processing
community has written over seventy libraries to facilitate computer vision, data visu-
alization, music, networking, and electronics.

The Processing software runs on the Mac, Windows, and GNU/Linux platforms.
With the click of a button, it exports applets for the Web or standalone applications
for Mac, Windows, and GNU/Linux. Graphics from Processing programs may also be
exported as PDF, DXF, or TIFF files and many other file formats.

Processing was founded by Ben Fry and Casey Reas in 2001 while both were John
Maeda’s students at the MIT Media Lab. Since that time, Processing has received
many significant awards and recognitions. The Cooper-Hewitt National Design Mu-
seum (a Smithsonian Institution) included Processing in its National Design Trien-
nial. Works created with Processing were featured prominently in the Design and
the Elastic Mind show at the Museum of Modern Art. Numerous design magazines,
including Print, Eye, and Creativity, have highlighted the software. For their work
on Processing, Fry and Reas received the 2008 Muriel Cooper Prize from the Design
Management Institute. The Processing community was awarded the 2005 Prix Ars
Electronica Golden Nica award and the 2005 Interactive Design Prize from the Tokyo
Type Director’s Club.

Pure Data
puredata.info
Presented by Hans-Christoph Steiner

Pd (aka Pure Data) is a real-time graphical programming environment for audio,
video, and graphical processing. It is the third major branch of the family of patcher
programming languages known as Max (Max/FTS, ISPW Max, Max/MSP, jMax, etc.)
originally developed by Miller Puckette and company at IRCAM. The core of Pd is
written and maintained by Miller Puckette and includes the work of many develop-
ers, making the whole package very much a community effort.

Pd was created to explore ideas of how to further refine the Max paradigm with the
core ideas of allowing data to be treated in a more open-ended way and opening it up
to applications outside of audio and MIDI, such as graphics and video.

It is easy to extend Pd by writing object classes (“externals”) or patches (“abstrac-
tions”). The work of many developers is already available as part of the standard Pd
packages and the Pd developer community is growing rapidly. Recent developments
include a system of abstractions for building performance environments; a library of
objects for physical modeling; and a library of objects for generating and processing
video in realtime.

Pd is free software and can be downloaded either as an OS-specific package, source
package, or directly from CVS. Pd was written to be multi-platform and therefore is
quite portable; versions exist for Win32, IRIX, GNU/Linux, BSD, and MacOS X run-
ning on anything from a PocketPC to an old Mac to a brand new PC. It is possible to
write externals and patches that work with Max/MSP and Pd using flext and cyclone.

Scratch
scratch.mit.edu
Presented by John Maloney and Evelyn Eastmond

Scratch is a new graphical-programming environment that enables young people
(ages 8 and up) to create their own interactive stories, games, and animations - and
share their creations on the web. Scratch is designed to make programming more
tinkerable, more meaningful, and more social. Since Scratch was launched in May
2007, more than 300,000 projects have been shared on the Scratch website, which
has been called “the YouTube of interactive media.” As young people create and share
Scratch projects, they learn to think creatively, reason systematically, and work col-
laboratively. Scratch is a project of the Lifelong Kindergarten group at the MIT Media
Lab, directed by the distinguished educational researcher, Mitchel Resnick.

Scratch aims to broaden the audience for computer programming by making pro-
gramming:

 * More tinkerable. To create programs in Scratch, you simply snap graphical
blocks together into stacks. The blocks are designed to fit together only in ways that
make syntactic sense, so there are no syntax errors. Different data types have differ-
ent shapes, eliminating type mismatches. You can make changes to stacks even as
programs are running, so it is easy to experiment with new ideas incrementally and
iteratively.
 * More meaningful. We designed Scratch to support a wide range of different types
of projects, so that people with diverse backgrounds and interests can all work on
personally-meaningful projects. In particular, Scratch enables people to program-
matically control graphics, animations, music, and sound, extending the media-ma-
nipulation activities that are popular in today’s youth culture.
 * More social. Scratch makes it easy to share projects on the web – and remix proj-
ects created by others. On the Scratch website, members are constantly borrowing
and building upon one another’s ideas, images, and programs. More than 15% of the
projects on the website are modified versions of other projects on the site.

Silverlight
www.microsoft.com/SILVERLIGHT/
Presented by DeVaris Brown

Microsoft Silverlight is a programmable web browser plugin that enables features
such as animation, vector graphics and audio-video playback that characterise rich
Internet applications. Version 2.0, released October 2008, brings additional interac-
tivity features and support for .NET languages and development tools. It is compat-
ible with multiple web browser products used on Microsoft Windows and Mac OS
X operating systems. Mobile devices, starting with Windows Mobile 6 and Symbian
(Series 60) phones, will also be supported.

VVVV
vvvv.org
Presented by Sebastian Oschatz

VVVV is a toolkit for real time video synthesis -- and a graphical programming
language which allows you to draw a program while it is running. It is designed to fa-
cilitate the handling of large media environments with physical interfaces, real-time
motion graphics, audio and video that can interact with many users simultaneously.
VVVV uses a “visual programming” interface, wherein user programs are created by
connecting various function blocks by “wires”. In this way, VVVV provides a graphi-
cal programming language for easy prototyping and development.

VVVV is real time. Whereas many other languages have distinct modes for building
and running programs, VVVV only has one mode -- runtime. Write code and see the
results simultaneously!

Other key features of VVVV include:
• Effortless handling of multiple objects
• Seamless multi-projection setups
• DirectX-based 3D rendering
• Realtime programming of HLSL shaders, directly on the graphics card
• Interfacing with a wide variety of external devices and protocols, including UDP,
TCP, RS232, OSC, MIDI, DMX, HTTP and plugin standards like VST and FreeFrame.

DeVaris Brown is the Academic Relations Manager for the Heartland Region of
Microsoft Corporation. DeVaris has been with Microsoft since August of 2006, first
serving as a Systems Engineer within the Windows Live Operations group. In this
role, he was responsible for creating automation for the largest installation of Win-
dows/SQL Server and coding libraries for the Hotmail division of Windows Live.
In his current role, DeVaris travels throughout the Heartland Region of the United
States, building relationships with students and faculty to increase awareness about
Microsoft products, such as Silverlight, and to get people excited about technology.

DeVaris received his BS in 2006 from the University of Illinois at Urbana Cham-
paign, with a double major in Math and Computer Science and a minor in Manage-
ment Information Systems. He is a recognized expert in the fields of intrusion detec-
tion, high performance computing, and virtualization. During his college years he
interned with Intel, IBM, and Cisco. Currently he is a member of ACM, IEEE, and the
National Society of Black Engineers.

Arturo Castro is currently based in Barcelona. He studied computer science and
has collaborated in several creative projects since 2004. Arturo works with Zachary
Lieberman and Theodore Watson on the development of openFrameworks. He is the
maintainer of the Linux version and leads the openFrameworks working group at
Hangar (Barcelona).

Dr. Wanda Dann, an active member of the Alice team for the last decade, has
recently assumed leadership of the team. She is currently transitioning into a faculty
position at Carnegie Mellon University from Associate Professor of Computer Science
at Ithaca College. Wanda’s research interests include visualization in programming
and programming languages and innovative approaches to introductory program-
ming.

With Dr. Steve Cooper and Dr. Randy Pausch, she has published papers on the use
of program visualization in teaching and learning introductory programming. Pa-
pers have appeared in ACM’s Special Interest Group on Computer Science Education
(SIGCSE) inroads, the Computer Science Education Journal, and other related publi-
cations. She is co-author of Learning to Program with Alice (2006, Prentice-Hall).

Dr. Dann’s leadership as a computer science educator has been recognized in her
various roles as SIGCSE Technical Symposium publications editor, special projects
chair, program chair, and symposium chair. She is now a member of the SIGCSE
Board.

Presenters

R. Luke DuBois is a composer, artist, and performer who explores the temporal,
verbal, and visual structures of cultural and personal ephemera. He holds a doctorate
in music composition from Columbia University, and has lectured and taught world-
wide on interactive sound and video performance. He has collaborated on interactive
performance, installation, and music production work with many artists and orga-
nizations including Toni Dove, Matthew Ritchie, Todd Reynolds, Michael Joaquin
Grey, Elliott Sharp, Michael Gordon, Bang on a Can, Engine27, Harvestworks, and
LEMUR, and was the director of the Princeton Laptop Orchestra for its 2007 season.

An active visual and musical collaborator, DuBois is the co-author of Jitter, a soft-
ware suite for the real-time manipulation of matrix data. He appears on nearly
twenty-five albums both individually and as part of the avant-garde electronic group
The Freight Elevator Quartet. He currently performs as part of Bioluminescence, a
duo with vocalist Lesley Flanigan that explores the modality of the human voice, and
in Fair Use, a trio with Zach Layton and Matthew Ostrowski, that looks at our accel-
erating culture through elecronic performance and remixing of cinema.

DuBois has lived for the last fifteen years in New York City. He teaches at the Brook-
lyn Experimental Media Center at NYU’s Polytechnic Institute. His records are
available on Caipirinha/Sire, Liquid Sky, C74, and Cantaloupe Music. His artwork is
represented by bitforms gallery in New York City. DuBois holds both a bachelor’s and
a doctorate in music composition from Columbia University, and is a staff researcher
at Columbia’s Computer Music Center.

Evelyn Eastmond has been a member of the Scratch team in the Lifelong Kinder-
garten group at the MIT Media Lab for six years: first as an undergraduate research-
er, then graduating with an MEng in Computer Science and now working fulltime
as a developer for Scratch, splitting her time between her home in Madison, WI and
the MIT Media Lab in Cambridge. She continues to learn and grow as Scratch itself
evolves and is excited to connect with Scratch and *art and code* enthusiasts from all
corners of the world. Evelyn is currently teaching herself Flex, Processing and other
cool things.

Ben Fry received his doctoral degree from the Aesthetics + Computation Group at
the MIT Media Laboratory, where his research focused on combining fields such as
Computer Science, Statistics, Graphic Design, and Data Visualization as a means
for understanding complex data. After completing his thesis, he spent time develop-
ing tools for visualization of genetic data as a postdoc with Eric Lander at the Eli &
Edythe L. Broad Insitute of MIT & Harvard. During the 2006-2007 school year, Ben
was the Nierenberg Chair of Design for the the Carnegie Mellon School of Design.
At the end of 2007, he finished the book Visualizing Data for O’Reilly. He currently
works as a designer in Cambridge, MA.

With Casey Reas of UCLA, he currently develops Processing, an open source pro-
gramming environment for teaching computational design and sketching interac-
tive media software that won a Golden Nica from the Prix Ars Electronica in 2005.

In 2006, Fry received a New Media Fellowship from the Rockefeller Foundation to
support the project. Processing was also featured in the 2006 Cooper-Hewitt Design
Triennial. In 2007, Reas and Fry published Processing: A Programming Handbook
for Visual Designers and Artists with MIT Press.

Ira Greenberg is an associate professor at Miami University of Ohio, with a joint
appointment in the Department of Art and the Armstrong Institute for Interactive
Media Studies. He is also an affiliate faculty member of the Department of Computer
Science and Systems Analysis. His research interests include aesthetics and compu-
tation, expressive programming, emergent forms, net-based art, and computer art
pedagogy. During the last few years, he has been torturing defenseless art students
with trigonometry, algorithms, and object-oriented programming and is excited to
spread this passion to the rest of the world. He is the author of Processing: Creative
Coding and Computational Art, Friends of Ed, 2007 and the upcoming Processing for
Flash Developers, Friends of Ed, (summer, 2009).

Golan Levin is Director of the STUDIO for Creative Inquiry and Associate Professor
of Electronic Art at Carnegie Mellon University, where he also holds courtesy ap-
pointments in the School of Design and the School of Computer Science. Golan is the
organizer of the Art and Code Conference.

Golan’s pedagogy is concerned with reclaiming computation as a personal medium of
expression. To that end, his courses are designed to give students the confidence to
program their own software creations from first principles. His studio classes focus
on significant themes in contemporary electronic media arts, such as interaction de-
sign, computational form generation, information visualization, and audiovisual per-
formance. These function as “studio art courses in computer science,” in which the
objective is to produce personally and socially relevant expressions, but the medium
is software created by the students themselves. Golan’s own work investigates formal
languages for visualization and interactivity in cybernetic systems. He is known for
the conception and creation of Telesymphony, a concert whose sounds are wholly
performed through the carefully choreographed ringing of the audience’s own mobile
phones, and for interactive information visualizations like Secret Lives of Numbers
and Dumpster, which offer novel perspectives onto millions of online communica-
tions. Golan has exhibited and performed widely in Europe, America and Asia.

Zachary Lieberman’s work uses technology in a playful and enigmatic way to
explore the nature of communication and the delicate boundary between the vis-
ible and the invisible. He creates performances, installations, and on-line works that
investigate gestural input, augmentation of the body, and kinetic response.

Working with collaborator Golan Levin, he has created a series of installations -
“Remark” and “Hidden Worlds” - which presented different interpretations of what
the voice might look like if we could see our own speech. These were followed with
“Messa Di Voce,” a concert performance in which the speech, shouts and songs of

two abstract vocalists were radically augmented in real-time by interactive visualiza-
tion software. The collaborators have toured and exhibited their works widely, much
to the delight of their audiences. Lieberman’s installation / performance “Drawn,” in
which live painted forms appear to come to life, rising off the page and reacting to the
world around them, recently won awards in the Ars Electronica and CYNETart com-
petitions. Most recently, he presented “Opensourcery,” collaboration with Spanish
magician Mago Julian, in which open source software is combined with traditional
close-magic to create a completely new realm of tricks.

Lieberman has held artist residencies at Ars Electronica Futurelab, Eyebeam, Dance
Theater Workshop, and most recently at the Hangar Center for the Arts. He is also
the founder, with Theo Watson and Arturo Castro, of openFrameworks, an open
source toolkit for creative coding in C++.

John Maloney is the lead programmer for Scratch, a new programmable toolkit
that lets kids create and share their own games, animated stories, and interactive art.
Scratch is designed to help people learn programming and problem solving as they
create personally meaningful artifacts.

Prior to joining the Lifelong Kindergarten John worked for computer pioneer Alan
Kay. Under Alan, John developed key parts of Squeak, an experimental programming
system for elementary school children. He also worked at Walt Disney Imagineering,
where he built an experimental handheld electronic guide for theme park guests and
software for a new attraction that earned the theme park equivalent of an Academy
Award. Prior to working at Disney, John worked at Apple, Sun Microsystems Labs,
and Xerox.

John has a Ph.D. in Computer Science from the University of Washington and M.S./
B.S. degrees in Electrical Engineering and Computer Science from MIT. John enjoys
singing and playing the recorder. He also likes bicycling, hiking, and cross-country
skiing.

Tom McMail is passionate about innovation, education and technology as means
for improving the human condition. After his first university training in Psychology
and Psycholinguistics, he taught K-12 in many subjects and grade levels, then took a
role as social worker for Head Start. He has also worked as a professional musician
and composer, plays more than 20 instruments and has taught improvisation, as well
as music theory and composition.

After returning to school for a degree in Computer Science, he worked in the elec-
tronic gaming industry as a computer music and technical audio expert, and later
became a producer and developer of educational software.

Overall, Tom has spent nearly 14 years at Microsoft in a variety of roles. At MSN, he
used new technologies and techniques in support of special events and also created
innovative plans for online community adopted across Microsoft.com properties.

With MSR University Relations, Tom migrated regional efforts to a more strategic
approach, directly addressing academic concerns about declining enrollments, gen-
der disparity, and software security, introducing Tablet PCs to universities and driv-
ing experimentation to find best uses of technology to transform education. He was
instrumental in introducing programs employing Gaming and Robotics as change
agents for reinvigorating CS curriculum.

At Microsoft Research, in the External Research group, for the past two years he
focused on seeking the most innovative new research and researchers emerging
today as part of the Breakthrough Research initiative. Currently he is responsible
for strategic collaboration programs with North American academic institutions and
researchers.

Tom lives outside of Monroe, Washington with his family in the beautiful rural foot-
hills of the Cascade Mountains.

Sebastian Oschatz is one of the founders of the Frankfurt-based media company
MESO Digital Interiors, established in 1997 to work with experimental media in-
terfaces and interactive installations. MESO creates computational and interactive
exhibition designs for clients like Mercedes Benz, BMW, Nikon and Sony Ericsson,
among others.

MESO has also been the home of the developers of the visual programming tool
VVVV, created originally to run MESO’s own projects. VVVV has since snowballed
into a freely available multipurpose toolkit with an independent group of developers
and a growing fan base. VVVV is well-suited for realtime video synthesis, and gives
easy access to DirectX-shaders and a range of control protocols like MIDI, OSC and
DMX-512. Little-known in the United States but heavily used throughout Europe,
VVVV is an excellent tool for creating sound-responsive visual performances, al-
though it has also been developed with interactive installations in mind.

Casey Reas is an associate professor and chair of the Department of Design Media
Arts at UCLA. His classes provide a foundation for thinking about software as a dy-
namic visual medium and set a structure for inquiry into synthesis of culture, tech-
nology, and aesthetics. With Ben Fry, Reas initiated Processing.org in 2001. Process-
ing is an open source programming language and environment for creating images,
animation, and interaction. In September 2007, they published Processing: A Pro-
gramming Handbook for Visual Designers and Artists, a comprehensive introduction
to programming within the context of visual media (MIT Press). Reas’ essays have
appeared in the books Network Practices (Princeton Architectural Press), Aesthetic
Computing (MIT Press), Code: The Language of Our Time (Hatje Cantz), and the
Programming Cultures issue of Architectural Design (Wiley).

Don Slater was already a secondary school teacher in Western Pennsylvania when
the first personal computers were introduced into his building. Don became a com-
puter science teacher, when he realized he wanted to help others discover the cool
things that they might be able to build with computers, as he had. Don taught and
served as the technology director at Sewickley Academy, a private school in the Pitts-
burgh area. In 1998, he began teaching introductory programming part time at Carn-
egie Mellon. In 2000, he was invited to become a full time member of the Computer
Science Department as a Lecturer.

Don joined the Alice Team in the fall of 2005 as he introduced Alice into his Intro-
ductory Programming course. Wanda Dann happened to be on sabbatical at Carnegie
Mellon that fall. and she became a valuable advisor as they explored the using Alice
in his course. With Wanda and Steve Cooper, Don has since presented at teacher
training workshops around the country, as well as at various conferences, including
NECC, SIGCSE, IMICT, and ISECON.

Don is a consultant for the College Board in Advanced Placement Computer Science.
He has served as a reader and leader at the yearly Advanced Placement Computer
Science Exam grading since 1991. He has written articles for the College Board and
led teacher workshops throughout the east, and now directs the Advanced Placement
Teacher Workshop held each summer at Carnegie Mellon.

Daniel Shiffman is an Assistant Arts Professor at the Interactive Telecommunica-
tions Program (ITP) at NYU’s Tisch School of the Arts. Originally from Baltimore,
Daniel received a BA in Mathematics and Philosophy from Yale University and a
Master’s Degree from the Interactive Telecommunications Program. He is the author
of Learning Processing: A Beginner’s Guide to Programming Images, Animation, and
Interaction (Morgan Kaufmann Publishers, Elsevier Inc.)

Hans-Christoph Steiner spends his time designing interactive software with a
focus on human perceptual capabilities, building networks with free software, and
composing music with computers. With an emphasis on collaboration, he has worked
in many forms, including responsive sound environments, free wireless networks
that help build community, musical robots that listen, software environments that
allow people to play with math, and a jet-powered fish that you can ride. To further
his research, he teaches and works at various media art centers and organizes open,
collaborative hacklabs and barcamp conferences. He is currently teaching courses in
dataflow programming NYU’s Interactive Telecommunications Program.

His research focuses on making software tools enable read/write literacy, mostly
focusing on Pure Data, a graphical dataflow programming language. He also is an ac-
tive sound designer and artist, and draws the inspiration for shaping the software he
works with from the creative projects he works on.

Theodore Watson is an artist, designer and experimenter whose work is born out
of the curiosity and excitement of designing experiences that come alive and invite
people to play. Theodore’s work ranges from creating new tools for artistic expres-
sion, experimental musical systems, to immersive, interactive environments with
full-body interaction. His recent work includes the Graffiti Research Lab’s Laser Tag,
laser graffiti system and Funky Forest, an immersive interactive ecosystem for young
children. Theodore works together with Zachary Lieberman and Arturo Castro on
openFrameworks, which is an open source library for writing creative code in C++.

Watson’s work has been shown at MoMA, Tate Modern, Ars Electronica, The Sun-
dance Film Festival, Res Fest, REMF, Cinekid, Montevideo, OFFF, SHIFT, ICHIM,
The Creators Series, Deitch Projects, Eyebeam, Pixel Gallery, Museum N8 Amster-
dam.

why the lucky stiff (or _why) is a computer programmer. His best known work
may be Why’s (poignant) Guide to Ruby, a book which teaches the Ruby program-
ming language with stories; its eclectic style has been compared to a “collaboration
between Stanislaw Lem and Edward Lear”. Chapter 3 of this Guide was republished
in The Best Software Writing I, edited by Joel Spolsky.

Most recently, Why has focused his efforts on the problem of how to better teach
programming, and how to make programming more appealing to young people. His
latest project, Hackety Hack, is a Ruby-based environment used to teach program-
ming to children. His most vocal critics describe him as “a fledgling freelance pro-
fessor, should one adhere to the most fraudulent of definitions.” His biographical
information, matter of point, is riddled with accolades which are clearly either lifted
or falsified in order to cast him in a good light -- let’s say 40 watts of violet.”

Dr. Woohoo (translation: serious fun) is a New Mexico-based artist and program-
mer. Woohoo sculpts the form of his generative artwork and then harnesses natural
phenomena (wind, gravity, etc.) and music, through algorithms, to drive his brush-
strokes and composition. With a DIY attitude, he creates his own color, paint and
visual effects applications using Adobe AIR and ExtendScript, and rather than recre-
ate existing features and functionality, Woohoo integrates his tools with applications
like Photoshop, Illustrator and Maya. Woohoo’s latest work explores the dichotomy
between Population vs. Consumption from the abstract perspective of Mother Na-
ture. For more information on Dr. Woohoo, you can find him at DrWoohoo.com or in
the featured article of the March issue of Photoshop User magazine.

Okay, then, children of the modern age (where we live in a world so tied together
with wires that Pangaea ain’t goin’ nowhere!), you tell me if this is a predicament or
not.

In the 1980s, you could look up from your Commodore 64, hours after purchasing it,
with a glossy feeling of empowerment, achieved by the pattern of notes spewing from
the speaker grille in an endless loop. You were part of the movement to help ma-
chines sing! You were a programmer! The Atari 800 people had BASIC. They know
what I’m talking about. And the TI-994A guys don’t need to say a word, because the
TI could say it for them!

The old machines don’t compare to the desktops of today, or to the consoles of today.
But, sadly, current versions of Windows have no immediately accessible program-
ming languages. And what’s a kid going to do with Visual Basic? Build a modal dia-
log? Forget coding for XBox. Requires registration in the XBox Developer Program.
Otherwise, you gotta crack the sucker open. GameCube? GameBoy? Playstation 2?

Coding Just Isn’t Accessible

Yes, there are burgeoning free SDKs for many of these platforms. But they are ob-
scure and most children have no means of actually deploying or executing the code
on their own hardware! This is obvious to us all and likely doesn’t seem such a big
deal. But ask yourself what might have happened had you not had access to a pro-
gramming language on an Atari 800 or a Commodore. You tell me if this is a predica-
ment.

It turns out, most of the kids in my neighborhood are exposed to coding through
the TI calculator. A handful of languages are available on the TI and its processor is
interesting enough to evoke some curiousity. But this hasn’t spread to its PDA big
brothers, where young people could have more exposure to programming. And un-
doubtedly the utility of a language on the Palm, Pocket PC and others would be useful
to many.

So what’s the problem here? We have no shortage of new languages, but they become
increasingly distanced from the populace. Are the companies behind these plat-
forms weary of placing the power of a programming language in the hands of users?
Is there not a demand any longer? It’s got to be some kind of greed, power, money
thing, right?

Afterword
The Little Coder’s Predicament
by Why the Lucky Stiff (2003)
Used with permission

Perhaps this is just another reason to push Linux and BSD on consumer systems.
Still, are scripting languages easily accessible to beginners on those systems? OSX
has made several scripting languages available (including Ruby and Python), but
most users are unaware of their presence.

I should mention that Windows is equipped with its own scripting host for develop-
ing in JScript and VBScript. But the use of the scripting host is (I believe) under-doc-
umented and limited for beginners. Try doing something useful in a script without
using Server.CreateObject. Let’s not let kids touch the COM objects, please!

The Christmas List

I’m thinking a toy language for consoles and desktops alike could be monumen-
tal. I’m ot saying it needs to be cross-platform. A language for GameCube that took
advantage of platform-specific features could be more appealing to GameCube users
than a language that used a reduced featureset, but could execute on a handheld. Re-
ally, we live in a world where both choices should be available.

As for essential features:

1. Transportable code.

 On my TI-994A, I could make a little, animated Optimus Prime from pixels. In-
sert cassette. Record. Pass around to friends. Receive high fives from friends. Put on
wraparound shades. Thank you, TI! Thank you, Optimus Prime!

 A little language for the consoles could be wildly popular if combined with the
good ature of sharing code. This could be done by trading memory cards, but would
be more effective if code could be easily obtained and posted on the Web. Learning
would accelerate and collaborative development could take place.

 A suitable language should give coders access to I/O devices, to allow experimenta-
tion with network devices and the ability to enhance one’s connectivity with others.
For the consoles, games could provide hooks for user mods. This has long proven a
successful staple of the desktop gaming world.

2. Simplicity.

 You’ve got to be able to write a single line of code and see a result. We need some
instant results to give absolute beginners confidence. Simple methods for sending an
e-mail, reading a web page, playing music. Demonstrable in a one-liner.

 Admittedly, as our systems have grown complex, it is difficult to balance simplicity
and capability. Most users will be unimpressed by code that emits beeps and bloops
from a PlayStation 2. If Ruby were available on the PS2, then I would hope that I
could hear rich symphonic sounds from a wee bit of code.

 Orchestra.play(“A:2”, “C:4”, “E:1”, “G:1”)

 Access to the graphic engine might require more complex code. But simple draw-
ing methods could be provided for beginners. Or images could be stored alongside
code and accessed programmatically.

 ImageLibrary.load(“GolfingOldMan”).drawAt(12, 10)

 The trick would be to uncover what small applications might entice novices and
still provide the ability to write large applications that would drive developers to mas-
ter the language and not limit their growth.

3. Sensible environment.

 Considering that many won’t want to purchase a keyboard for their gaming unit,
let’s make sure that a reasonable environment is provided for entry of text. Control-
lers could be worked like the Twiddler. Or code could be transferred via IR, TCP/IP.
(Dare I say cassette? :D)

4. Give it away!

 It used to be that programming was practically an inalienable right for users.
Include a language with the system, situated in a friendly spot. Each of the game
consoles I’ve mentioned has launchers. (With the exception of Game Boy and its suc-
cessors.) Provide a development prompt from the launcher. From desktop software,
provide shortcuts for both the command prompt and a development prompt.

Remember, we’re looking for a language that requires no system hacks. No obscure
links. No warranty violation. We’ve become so used to these techniques that it seems
to be an essential part of getting our way.

And in many ways it is essential. Tinkering with hardware is learning. Lobotomizing
and renovating is meaningful, magical. On behalf of those who prefer to code, I make
these wishes. Not to take away jobs from the Phillips screwdriver.
The Ultimatum

My challenge is to Sony, Nintendo, Microsoft, Apple, and to those who manufacture
and develop our interactive technology. Let us interact with these machines more
deeply. Provide us a channel for having a dialogue with the entertainment boxes we
nurture and care for. I swear to you, the relationship between the public and your
product will assuredly blossom. That box will become more of a chest for our per-
sonal works.

In addition, if your developers start putting out crap, then you have a whole world of
people to pick up the slack.

My challenge is for you to bundle a useful programming language with your product.
Ruby, Squeak, REBOL, Python. Take your pick. It will be inexpensive to add any of
these languages to your systems. And people will seriously pray to you. You know
how geeks get when they pledge allegiance to something. But, yes, Ruby is preferable.

Acknowledgments

ART AND CODE is made possible by a generous grant from Microsoft Research, with
oversight by the Center for Computational Thinking at Carnegie Mellon University. ART AND
CODE is a project of the CMU STUDIO for Creative Inquiry, directed by Golan Levin. We
express our gratitude to Microsoft Research and the CMU Center for Computational Thinking
for their sponsorship, and to the STUDIO for Creative Inquiry and the CMU School of Art for
their administrative support.

Conference Production Credits
Conference Organizer: Golan Levin (STUDIO for Creative Inquiry and School of Art, CMU)
Executive Producer: Peter Lee (Center for Computational Thinking and Computer Science
Department, CMU)
Business Manager and Logistics: Jennifer Brodt (STUDIO for Creative Inquiry, CMU)
Additional Communications and Logistics: Marge Myers (STUDIO for Creative Inquiry,
CMU)
Registration, Catering, Additional Logistics: Carolyn Manley (Conference Services, CMU)
Web Design and Communications: Drue Miller (drue.com)
Production Assistant and Coordinator: Courtney Dow (CMU School of Art)
Registration Database Rehabilitation: Andrea Boykowycz (Twirt.com)
Volunteers: Ally Reeves, Alyssa Reuter, Angela Wang, Caryn Audenried, David Kjos Jr., David
Yen, Eamae Mirkin, Jet Townsend, Julie Mallis, Lea Allbaugh, Rexy Tseng, Riley Harmon,
Robert Kotcher, Robyn Gray, Xiaoyuan Jiang, Yang Shan

Additional Credits and Acknowledgments
Exhibition Support: Adam Welch and Stefanie Moser (Pittsburgh Center for the Arts)
Exhibition Fabrication & Production: Jeremy Ficca and P. Zach Ali (Digital Fabrication
Laboratory, CMU)
Film Series Programming: Gary Kaboly (Pittsburgh Filmmakers)
Dorkbot Co-Director & Liaison: Jet Townsend (Tangible Interaction Design program, CMU)
Great Good Place Maker: Eric Stern (brillobox)

We are grateful to CMU Cluster Services for their efforts in providing the best computers
available for our workshops. We also express our gratitude to CMU Conference Services, for
assistance in coordinating our lecture spaces and food service; and to the CMU School of Art
for a variety of support, and in particular, Lauren Goshinski, Robert Kollar, Cindy Lammert,
and Janice Hart of the CMU School of Art for their flexibility and assistance.

printed on recycled paper

ART AND CODE is a symposium on programming environments for artists, young people,
and the rest of us. The event takes place the weekend of March 7-9, 2009 on the campus
of Carnegie Mellon University in Pittsburgh, PA. It features hands-on workshops and a
conference showcase for 11 different creative toolkits -- programming languages made by
artists, for artists.

Saturday March 7th features intensive three-hour workshops, taught by leading developers
and authors, in a variety of programming environments. Some workshops are intended for
more advanced users, but many are introductory in nature and are suited for all ages. Some
workshops are specifically for teens and ‘tweens.

Sunday March 8th offers a day-long sequence of 45-minute presentations about each
programming environment. Learn about who is using each programming environment, and
why. Many of these lectures are given by the main people creating these toolkits.

Monday March 9th begins with two morning sessions of “Hello World” workshops that are
ideal for beginners or people wanting a quick “leg up” into learning a new toolkit. These are
followed, after lunch, by panel discussions featuring developers and educators.

Throughout the weekend are a variety of related events, including an exhibition of
computational art at the Pittsburgh Center for the Arts, a festival of abstract film at Pittsburgh
Filmmakers, an open-mic Dorkbot (show-and-tell / pecha-kucha) at the brillobox, and plenty
of social meals.

